Spin structures and Killing spinors on lens spaces

A. FRANC*

c/o Departement de Mathematiques Campus Plaine c.p. 218 B - 1050 Bruxelles

Abstract. We determine the values of m and p for which a lens space $\mathbb{Z}_p \setminus S^{2m-1}$ admits a spin structure. We prove that the only lens spaces (with dimension > 3) admitting a maximal number of linearly independent Killing spinors are the real projective spaces

 $\mathbb{P}^{4k-1}(\mathbb{R}).$

INTRODUCTION

A lens space is the quotient of the sphere $S^{2m-1}(m \ge 2)$ by a particular action of the group \mathbb{Z}_p . It is known that there exists a unique spin structure on S^{2m-1} [5]. On the real projective space $\mathbb{P}^{2m-1}(\mathbb{R})$, which is the lens space corresponding to p = 2, there exist two inequivalent spin structures when *m* is even and no spin structure when *m* is odd [5]. On the lens spaces associated to S^5 , there exists one and only one spin structure if *p* is odd and none if *p* is even [8].

In this paper, we determine the values of m and p for which a lens space admits a spin structure (Theorem 1).

It was observed in [2] that the spin bundles on $S^n (n \ge 2)$ are trivial by

Key Words: Spin structures, Killing spinors, Lens Spaces. A.S.C.: 57 R 15.

^{*} Aspirant au Fonds National Belge de la Recherche Scientifique.

constructing $2^{\lfloor n/2 \rfloor}$ linearly independent non-zero sections which are Killing spinors. The same argument was used in [4] to prove triviality of the spin bundle on $P^{4k-1}(\mathbb{R})$ $(k \ge 1)$. We prove that a lens space of dimension 2m - 1 (m > 2) admits 2^{m-1} linearly independent Killing spinors if and only if m = 2k and the lens space is the projective space $P^{4k-1}(\mathbb{R})$. (Theorem 2).

The paper is organized as follows:

In § 1, we recall the basic notions of spin structure, spinors and Killing spinors. § 2 is devoted to the study of existence and to the construction of spin structures on lens spaces. In § 3, we compute the conditions for a Killing spinor on the sphere to give rise to a Killing spinor on a lens space.

1. DEFINITIONS AND NOTATIONS (for details, see [1] and [2])

Let C_n be the *Clifford algebra* of the real euclidean space of dimension $n : C_n = \mathcal{T}(\mathbb{R}^n)/I$ where $\mathcal{T}(\mathbb{R}^n)$ is the tensor algebra of \mathbb{R}^n and I is the ideal generated by $x \otimes y + y \otimes x + 2 \langle x, y \rangle$ Id. $(\langle x, y \rangle)$ is the usual scalar product on \mathbb{R}^n). C_n^+ (resp. C_n^-) is the image in C_n of the tensors of even (resp. odd) degree.

If n is even, n = 2m, the complexification $C_{2m}^{\mathbf{C}}$ of C_{2m} is isomorphic to the algebra of all linear endomorphisms of the exterior algebra ΛW of an isotropic subspace W of \mathbb{C}^m . This isomorphism can be constructed as follows:

Let $\{e_a, a = 1, ..., 2m\}$ be an orthonormal basis of \mathbb{R}^{2m} . Let W be the space generated by $\{f_k = e_{2k-1} + ie_{2k}, 1 \le k \le m\}$ Define

$$\begin{array}{l}
\sum_{k=1}^{2m} \widetilde{\rho} : \mathbb{C}^{m} (\subset C_{2m}^{\P}) \to \operatorname{End}(\Lambda W) \quad \text{by} \\
\sum_{k=1}^{2m} \widetilde{\rho} (e_{2k-1}) \cdot \alpha = f_{k} \wedge \alpha - i(f_{k}^{*})\alpha \\
\sum_{k=1}^{2m} \widetilde{\rho} (e_{2k}) \cdot \alpha = -\sqrt{-1}(f_{k} \wedge \alpha + i(f_{k}^{*})\alpha) \qquad \alpha \in \Lambda W
\end{array}$$

where $i(f_k^*)$ is the inner product by f_k^* .

This linear map extends to an isomorphism of $C_{2m}^{\mathfrak{C}}$ onto $\operatorname{End}(\Lambda W)$.

We shall choose as basis of ΛW :

$$\{1, f_I, f_J; f_I = f_{i_1} \land \dots \land f_{i_{2r}} \ \left(1 \le r \le \left[\frac{m}{2}\right], \ 1 \le i_1 \le \dots < i_{2r} \le m\right) \}$$

$$f_J = f_{j_1} \land \dots \land f_{j_{2r+1}} \left(0 \le r \le \left[\frac{m-1}{2}\right], \ 1 \le j_1 < \dots < j_{2r+1} \le m\right)$$

$$\gamma_k^{2m} \gamma_1^{2m} + \gamma_1^{2m} \gamma_k^{2m} = -2\delta_{k1}Id.$$

The space $S_{2m} = \Lambda W$ is called the *space of spinors* and has complex dimension 2^m . It decomposes as $S_{2m} = S_{2m}^+ \oplus S_{2m}^-$ where S_{2m}^+ (resp. S_{2m}^-) is the space of even (resp. odd) forms on W. This decomposition is preserved by C^+ , i.e. $C^+S^{\pm} \subset S^{\pm}$ (*).

If n is odd, n = 2m - 1, C_{2m-1} is isomorphic to C_{2m}^+ and the isomorphism is constructed as follows:

Let $\alpha : \mathbb{R}^{2m-1}(\subset C_{2m-1}) \to C_{2m}^+ : e_i \to e'_i e'_{2m}$ where $\{e_i, i \leq 2m-1\}$ (resp. $\{e'_j, j \leq 2m\}$) is an orthonormal basis of \mathbb{R}^{2m-1} (resp. \mathbb{R}^{2m}). This extends to an isomorphism of C_{2m-1} onto C_{2m}^+ .

Using this isomorphism and (\star) one sees that

$$C_{2m-1}^{\mathbf{C}} \sim \operatorname{End}(S_{2m}^+) \oplus \operatorname{End}(S_{2m}^-)$$
$$\equiv \operatorname{End}(S_{2m-1}) \oplus \operatorname{End}(S_{2m-1}').$$

The space $S_{2m}^+ = S_{2m-1}$ is called the space of spinors.

The representation of the Clifford algebra C_{2m-1} on S_{2m-1} , defined on the generators $e_a (a \le 2m-1)$ by

$$\widetilde{\rho}^{2m-1}(e_a) = \widetilde{\rho}^{2m}(\alpha(e_a))\big|_{S_{2m-1}} = \widetilde{\rho}^{2m}(e_a'e_{2m}')\big|_{S_{2m-1}}$$

is irreducible. The γ matrices read $\gamma_k^{2m-1} = \widetilde{\rho}^{2m-1}(e_k) = \gamma_k \gamma_{2m} |_{S^{\frac{1}{2}m}}$

The Spin group, Spin(n), is the set of elements x in C_n^+ such that $xyx^{-1} \in \mathbb{R}^n (\subset C_n)$ for all $y \in \mathbb{R}^n$ and $x^{\dagger}x = 1$ where τ is the unique antiautomorphism of C_n extending $Id|_{\mathbb{R}^n}$. The fundamental representation of Spin(n) on S_n ,

 $\widetilde{\rho}|_{\mathrm{Spin}(n)}$, is called the spin representation.

If $n \ge 3$, the Spin group Spin(n) is the universal covering of SO(n). The covering homomorphism is θ : $\text{Spin}(n) \rightarrow SO(n)$:

$$x \rightarrow [y \rightarrow xyx^{-1}].$$

Its differential is an isomorphism of Lie algebras θ_{\star} : spin(n) \rightarrow so(n).

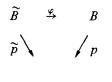
If E_{ab} denotes the $n \times n$ matrix with 1 at the intersection of the a^{th} row and b^{th} column and 0 elsewhere, an element Λ of so(n) reads $\Lambda = \sum_{a,b} \Lambda^{ab} E_{ab}$ with $\Lambda^{ab} = -\Lambda^{ba}$, and $\theta_{\star}^{-1}(\Lambda^{ab} E_{ab}) = -\frac{1}{4}\Lambda^{ab} e_{a}e_{b}$.

Let (M, g) be an oriented Riemannian manifold of dimension n and let $B \xrightarrow{p} M$

be the bundle of oriented orthonormal frames on M, a principal bundle over M with structure group SO(n). One says that (M, g) admits a *spin structure* (or is a

spin manifold) if one can find a principal bundle $\widetilde{B} \xrightarrow{\widetilde{P}} M$ over M with structure group $\operatorname{Spin}(n)$ and a homomorphism $\varphi: \widetilde{B} \to B$ such that

(i) the following diagram commutes:



М

(ii) $\varphi(\xi g) = \varphi(\xi)\theta(g)$ for all $\xi \in \widetilde{B}$, $g \in \text{Spin}(n)$, where $\theta : \text{Spin}(n) \to SO(n)$ is

the covering homomorphism.

PROPOSITION 1. ([6]): (M, g) admits a spin structure iff the second Stiefel-Whitney class of the tangent bundle of M vanishes. In this case, the number of inequivalent spin structures on M is equal to $\# H^1(M, \mathbb{Z}_2)$.

If *M* is a spin manifold, the associated vector bundle $\mathscr{S} = \widetilde{B} \times n S_n$ is called the *spin bundle* and its sections are the *spinor fields*.

To each spinor field ψ , one can associate a function $\widetilde{\psi} : \widetilde{B} \to S_n$ such that

$$\widetilde{\psi}(\xi g) = \stackrel{n}{\widetilde{\rho}}(g^{-1})\widetilde{\psi}(\xi) \qquad \forall g \in \operatorname{Spin}(n), \ \xi \in \widetilde{B}.$$

Let $\widetilde{\omega}$ be the pull-back connection on \widetilde{B} of the Levi Civita connection ω on $B: \widetilde{\omega} = \theta_{\star}^{-1}(\varphi^{\star}\omega).$

The covariant derivative $\nabla \psi$ of a spinor field ψ is defined in the following way: if X is a vector field on M, $\nabla_X \psi$ is the spinor field whose associated function on \widetilde{B} is $\widetilde{\nabla_X \psi} = \overline{X} \widetilde{\psi}$ where \overline{X} is the horizontal lift of X on \widetilde{B} with respect to $\widetilde{\omega}$.

Let $\mathscr{E} = T^*M \otimes \mathscr{S} \otimes \mathscr{S}^* = \widetilde{B} \times_{\widetilde{\rho}} (\mathbb{R}^{n*} \otimes S_n \otimes S_n^*)$ where $\overline{\rho} = (\overset{n}{\rho} \circ \theta) \otimes \overset{n}{\widetilde{\rho}} \otimes \overset{n}{\widetilde{\rho}}^*$ (here $\overset{n}{\rho}$ is the usual representation of SO(n) on \mathbb{R}^n and $\overset{n}{\widetilde{\rho}}^*$ is the contragredient representation of $\overset{n}{\widetilde{\rho}}$).

The element γ is the section of \mathscr{E} whose associated function is the constant $\widetilde{\gamma}: \widetilde{B} \to \mathbb{R}^{n^*} \otimes S_n \otimes S_n^* : \widetilde{\gamma}(\xi) = \sum_{k=1}^n e_*^k \otimes \widetilde{\gamma}_k^n$ where $\{e_*^k\}$ is the dual basis of the basis $\{e_k\}$ of $\mathbb{R}^n, \widetilde{\gamma}_k = \widetilde{\rho}(e_k)$ and $S_n \otimes S_n^*$ is identified with $\operatorname{End}(S_n)$.

A Killing spinor on (M, g) is a spinor field ψ such that $\nabla \psi = \lambda \gamma \psi$ where λ is a constant. Equivalently, it is a function $\widetilde{\psi} : \widetilde{B} \to S_n$ having the following properties:

(i)
$$\widetilde{\psi}(\xi g) = \overset{n}{\widetilde{\rho}}(g^{-1})\widetilde{\psi}(\xi) \qquad \forall \xi \in \widetilde{B}, g \in \operatorname{Spin}(n)$$

(ii) $(\overline{X}\widetilde{\psi})(\xi) = \lambda \sum_{k=1}^{n} X^{k}(\xi)\gamma_{k}\widetilde{\psi}(\xi)$ $\forall X \text{ vector field on } M \text{ where } X^{k}(\xi)$ $(k \leq n) \text{ are the components of } X \text{ in the orthonormal frame } \varphi(\xi).$

A spin manifold admitting a non zero Killing spinor is an Einstein manifold. The constant λ is related to its scalar curvature R by the formula: [2]

$$R = 4n(n-1)\lambda^2$$

2. EXISTENCE OF SPIN STRUCTURES ON LENS SPACES

Consider $S^{2m-1}(m \ge 2)$ as the unit sphere of $\mathbb{C}^m : S^{2m-1} = \{(z_1, ..., z_m) \in \mathbb{C}^m : \sum_{i=1}^m z_i \overline{z}_i = 1\}$, and let \mathbb{Z}_p be realized as the subgroup of U(m) (also contained in SO(2m)):

$$\left(\begin{array}{c} \left(\exp\left(\frac{2\pi i q_1 k}{p}\right) \\ & \ddots \\ & \ddots \\ & & \ddots \\ & & \ddots \\ & & & \\ & & \exp\left(\frac{2\pi i q_m k}{p}\right) \end{array}\right), 0 \leq k \leq p-1$$

where $q_i (1 \le j \le m)$ is an integer, $0 < q_i < p$ and q_j is prime to p.

The lens space $L(p, q_1, ..., q_m)$ of dimension 2m - 1 with parameters $p, q_1, ..., q_m$ is the quotient space $\mathbb{Z}_p \setminus S^{2m-1}$.

Remark. One can take without loss of generality one of the q'_j s equal to 1. In what follows, we shall suppose $q_1 = 1$.

Example. The real odd dimensional projective spaces $\mathbb{P}^{2m-1}(\mathbb{R})$ are lens spaces with parameters (2; 1, ..., 1).

The unique spin structure on S^{2m-1} can be viewed as the principal bundle Spin(2m) on S^{2m-1} with the homomorphism θ : $Spin(2m) \rightarrow SO(2m)$ [4]. In fact, SO(2m) is naturally identified with the principal bundle of orthonormal oriented frames on S^{2m-1} : if $e_a(a \leq 2m)$ is orthonormal basis of \mathbb{R}^{2m} and if A

is the matrix of an element of SO(2m) in this basis, this element is identified with the orthonormal frame $\{Ae_i, i < 2m\}$ at the point Ae_{2m} .

PROPOSITION 2. Let (M, g) be a spin manifold of dimension n, and let (\hat{M}, \hat{g}, p) be a Riemannian covering of (M, g). Then (\hat{M}, \hat{g}) is a spin manifold. Moreover, if the covering is a Galois covering with automorphism group G and if $\tilde{B} \stackrel{\varphi}{\to} B$ (resp. $\tilde{B} \stackrel{\hat{\varphi}}{\to} \tilde{B}$) is the spin structure on (M, g) (resp. (\hat{M}, \hat{g})), then \hat{B} (resp. \tilde{B}) is a Galois covering of B (resp. \tilde{B}) with automorphism group G.

Proof. The manifold (\hat{M}, \hat{g}) is naturally oriented.

There exists an open cover $U_{\alpha} (\alpha \in A)$ of M which trivializes B, \tilde{B} and \hat{M} . The cocycles $g_{\beta\alpha}$ and $\tilde{g}_{\beta\alpha}$ of \hat{B} and \tilde{B} are such that $\theta(\tilde{g}_{\beta\alpha}(x)) = g_{\beta\alpha}(x)$ for all x in $U_{\beta} \cap U_{\alpha}$.

Let
$$p^{-1}(U_{\alpha}) = \prod_{a \in \mathscr{A}} U_{\alpha,a}$$
.

The cocycles of \hat{B} and \hat{B} are given by

$$\begin{split} & \hat{g}_{\beta_b \, \alpha_a}(y) = g_{\beta\alpha}(p(y)) \\ & \widetilde{\tilde{g}}_{\beta_b \, \alpha_a}(y) = \widetilde{g}_{\beta\alpha}(p(y)) \qquad \forall y \in U_{\beta, b} \cap U_{\alpha, a}, \end{split}$$

a and b being such that the intersection is not empty.

We still have $\theta(\hat{g}_{\beta_b \alpha_a}(y)) = \hat{g}_{\beta_b \alpha_a}(y)$ $\forall y \in U_{\beta,b} \cap U_{\alpha,a}$ and thus we have a spin structure on \hat{M} .

For the second part of the proposition, the hypothesis implies that \hat{M} is a principal bundle over M with G as structure group.

So $\hat{M} = \prod_{\alpha \in A} U_{\alpha} \times G/\sim$ where $[x_{\alpha}, a] \sim [x_{\beta}, b]$ iff $x_{\alpha} = x_{\beta}$ and $b = a \cdot c_{\beta\alpha}(x_{\alpha})$

with $c_{\beta\alpha}(x_{\alpha}) \in G$.

From the preceeding construction of \hat{B} , one then has:

$$\hat{B} = \prod_{\alpha \in A} U_{\alpha} \times G \times SO(n) / \sim$$

where

$$[x_{\alpha}, a, A] \sim [x_{\beta}, b, B]$$
 iff $x_{\alpha} = x_{\beta}, b = a \cdot c_{\beta\alpha}(x_{\alpha})$

and $B = g_{\beta\alpha}(x_{\alpha}) A$.

So G acts on \hat{B} by left multiplication on the 2^{nd} factor, and this action commutes with the action of SO(n).

A similar argument applied to \widetilde{B} concludes the proof of the proposition. Q.E.D. The Riemannian covering $S^{2m-1} \rightarrow L(p; q_1, ..., q_m)$ is a Galois covering with automorphism group \mathbb{Z}_p . Hence Proposition 2 implies that any spin structure on $L(p; q_1, ..., q_m)$ is the quotient of Spin (2m) by an action of \mathbb{Z}_p . Furthermore, this action is compatible with the homomorphism θ : Spin(2m) \rightarrow SO(2m) and hence projects onto the action on SO(2m) of the subgroup \mathbb{Z}_n :

By the lifting map theorem ([9] th. 1.8.12 p. 36), the action of \mathbb{Z}_p on Spin(2m) is induced by the left action of a subgroup of Spin(2m) isomorphic to \mathbb{Z}_p . A generator of this subgroup is one of the 2 elements in $\theta^{-1}(A)$. Hence to detect the existence of a spin structure on $L(p; q_1 \dots q_m)$, it is sufficient to determine if $\theta^{-1}(A)$ contains an element of order p.

THEOREM 1. If p is odd, $L(p; q_1, ..., q_m)$ admits one and only one spin structure. If p is even, $L(p, q_1, ..., q_m)$ doesn't admit a spin structure when m is odd, and admits two inequivalent spin structures when m is even.

Proof. By the definition of θ_{\star}^{-1} , we have

Let $\theta^{-1}(A)^+$ and $\theta^{-1}(A)^-$ be these two elements.

In the spin representation $\stackrel{2m}{\widetilde{\rho}}|_{\text{Spin}(2m)}$, the element $e_{2j-1}e_{2j}$ is written in the basis $\{1(=f_{\phi}), f_I = f_{i_1} \land \ldots \land f_{i_{2r}}, 1 \le r \le [\frac{m}{2}], 1 \le i_1 < \ldots < i_{2r} \le m\}$ of S_{2m}^+ as a diagonal matrix with entries:

$$\begin{split} & \overset{2m}{\widetilde{\rho}} (e_{2j-1}e_{2j})_{(I,I)} = (\gamma_{2j-1}\gamma_{2j}|_{S^+_{2m}})_{(I,I)} = -ie_j^I \\ & e_j^I = \begin{cases} + 1 \text{ if } j \in I = \{i_1, \ldots, i_{2r}\} \\ - 1 \text{ if } j \notin I = \{i_1, \ldots, i_{2r}\} \end{cases} \end{split}$$

where

The matrix of $\theta^{-1}(A)^{\pm}$ in this basis is thus also diagonal with entries: $(\theta^{-1}(A)^{\pm})_{(I,I)} = \pm \exp \frac{-i\pi}{p} (\epsilon_{I}^{I}q_{1} + \epsilon_{2}^{I}q_{2} + ... + \epsilon_{m}^{I}q_{m}).$ It is of order p iff $(\pm)^{p} (-1)^{q_{1} + ... + q_{m}} = 1.$

If p is even, the condition is that $q_1 + \dots + q_m$ must be even.

But all the q_j 's are prime to p, so they are all odd and the condition is satisfied iff m is even.

Note that in this case, the two matrices $\theta^{-1}(A)^+$ and $\theta^{-1}(A)^-$ are of order p. If p is odd, $\theta^{-1}(A)^+$ is of order p iff $q_1 + \ldots + q_m$ is even, and $\theta^{-1}(A)^-$ is of order p iff $q_1 + \ldots + q_m$ is odd.

In this case, one and only one of the 2 matrices is of order p, and thus there is one and only one spin structure.

When p and m are even, the two spin structures given by $\theta^{-1}(A)^+$ and $\theta^{-1}(A)^-$ are inequivalent. In fact, the universal coefficients theorem ([7]) implies that $\#H^1(L(p; q_1, \ldots, q_m), \mathbb{Z}_2) = 2$ when p is even.

So, applying proposition 1, if there exist spin structures, there are exactly 2 inequivalent ones. The result follows from the fact that all the spin structures on $L(p; q_1, ..., q_m)$ are provided by the quotient of Spin(2m) by \mathbb{Z}_p where the generator of \mathbb{Z}_p acts by left multiplication by one of the two matrices $\theta^{-1}(A)^+$ and $\theta^{-1}(A)^-$. Q.E.D.

Applying this result with p = 2:

COROLLARY. For all k integer ≥ 1 , $\mathbb{P}^{4k+1}(\mathbb{R})$ does not admit a spin structure and $\mathbb{P}^{4k-1}(\mathbb{R})$ admits two inequivalent spin structures.

3. KILLING SPINORS ON LENS SPACES

PROPOSITION 3. ([2] - [4]). On the sphere $S^{2m-1}(m \ge 2)$, a Killing spinor is defined by a function

$$\widetilde{\psi}^{\epsilon}(\epsilon = \pm 1) : \operatorname{Spin}(2m) \to S_{2m-1} = S_{2m}^+$$

given by $\widetilde{\psi}^{\epsilon}(g) = \tau^{\epsilon}(g^{-1})\psi_{e}^{\epsilon}$, where ψ_{e}^{ϵ} is any element of S_{2m-1} and τ^{ϵ} is the representation of Spin(2m) on S_{2m-1} whose differential is given by

$$\tau_{\star}^{\epsilon} \left(\sum_{a, b \leq 2m} \Lambda^{ab} e_a e_b \right) = \sum_{i,j \leq 2m-1} \Lambda^{ij} \gamma_i^{2m-1} \gamma_j^{2m-1} + 2\epsilon \sum_{i \leq 2m-1} \Lambda^{i2m} \gamma_i^{2m-1}.$$

It satisfies: $\nabla \psi^{\epsilon} = \frac{\epsilon}{2} \gamma \psi^{\epsilon}$.

Proposition 2 implies that a Killing spinor on a lens space $L(p; q_1, ..., q_m)$ (which is a spin manifold) admits a lift to S^{2m-1} which is a Killing spinor stable by the action of \mathbb{Z}_p .

The Killing spinor ψ^{ϵ} defined by $\tilde{\psi}^{\epsilon}(g) = \tau^{\epsilon}(g^{-1})\psi^{\epsilon}_{e}$ on S^{2m-1} gives rise to a Killing spinor on $L(p; q_{1}, ..., q_{m})$ iff

$$\tau^{\epsilon}(\theta^{-1}(A)^{\pm})\psi_{e}^{\epsilon}=\psi_{e}^{\epsilon},$$

where

$$\tau^{\epsilon}(\theta^{-1}(A)^{\pm}) = \tau^{\epsilon} \left(\pm \exp \frac{\pi}{p} \left(q_1 e_1 e_2 + \dots + q_m e_{2m-1} e_{2m} \right) \right)$$
$$= \pm \exp \frac{\pi}{p} \left(q_1 \gamma_1^{2m-1} \gamma_2^{2m-1} + \dots + q_{m-1} \gamma_{2m-3}^{2m-1} \gamma_{2m-2}^{2m-1} + \epsilon q_m \gamma_{2m-1}^{2m-1} \right).$$

In the basis $\{1, f_I\}$ of $S_{2m-1} = S_{2m}^+$, the matrix of $\tau^{\epsilon}(\theta^{-1}(A)^{\pm})$ is diagonal with entries:

$$(\tau^{\epsilon}(\theta^{-1}(A)^{\pm}))_{(I,I)} = \pm \exp \frac{-i\pi}{p} (\epsilon_1^I q_1 + \dots + \epsilon_{m-1}^I q_{m-1} + \epsilon \cdot \epsilon_m^I q_m)$$

So the equations read:

$$\pm \exp \frac{-i\pi}{p} (\epsilon_1^I q_1 + \dots + \epsilon \epsilon_m^I q_m) (\psi_e^{\epsilon})^I = (\psi_e^{\epsilon})^I$$

where $(\psi_e^{\epsilon})^I$ are the components of ψ_e^{ϵ} in this basis.

There exists a maximal number $(= 2^{m-1})$ of linearly independent Killing spinors iff these equations are simultaneously satisfied for all sets I of an even number of indices.

This is equivalent to

a) $\epsilon_1^I q_1 + ... + \epsilon \epsilon_m^I q_m = 2k_I p \ \forall I(k_I \in \mathbb{Z})$ if the spin structure is given by $\theta^{-1}(A)^+$

b) $\epsilon_1^I q_1 + \ldots + \epsilon \ \epsilon_m^I q_m = (2k_I + 1)p \ \forall I(k_I \in \mathbb{Z})$ if the spin structures is given by $\theta^{-1}(A)^-$.

The cases a) and b) can be treated in the same way:

Suppose m > 2.

By taking $I = \{1, m\}$ and $I = \{2, m\}$ and substracting the 2 equations, we get that $q_1 - q_2$ is a multiple of p. But q_1 and q_2 are positive integers < p and prime to p; so $q_1 - q_2 = 0$ and $q_1 = q_2 = 1$ because we may suppose $q_1 = 1$.

(A similar argument proves that $\forall i, j < m : q_i = q_i = 1$).

By taking $I = \emptyset$ and $I = \{1, 2\}$ and substracting the 2 equations, we obtain that 2 is a multiple of p, so p = 2 and all the q_j 's (including q_m) are equals to 1. Note that in this case m is even: m = 2k.

So this leads necessarily to the case of the real projective space $\mathbb{P}^{4k-1}(\mathbb{R})$. Moreover, the value of ϵ is determined by the spin structure and the parity of k: in the case a): $\epsilon = (-1)^k$, and in the case b): $\epsilon = (-1)^{k+1}$.

So we have proved:

THEOREM 2. The only lens spaces $L(p; q_1, ..., q_m)$ with m > 2 admitting 2^{m-1} linearly independent Killing spinors are such that m = 2k and are the real projective spaces $\mathbb{P}^{4k-1}(\mathbb{R})$ (k > 1).

Let $\widetilde{B}^{(\pm)}$ denote the two spin structures on $\mathbb{P}^{4k-1}(\mathbb{R})$.

A Killing spinor on $\mathbb{P}^{4k-1}(\mathbb{R})$ with spin structure $\widetilde{B}^{(\pm)}$ is determined by a Killing spinor ψ^{ϵ} on the sphere S^{4k-1} which satisfies $\widetilde{\psi}^{\epsilon}(g) = \widetilde{\psi}^{\epsilon}(\theta^{-1}(A)^{(\pm)}g)$ $\forall g \in \text{Spin}(4k)$ and for which the value of ϵ is determined by the condition $\epsilon = (\pm)(-1)^k$.

Remarks. 1. The second part of the theorem was already proved in [4].

2. The first part of the theorem is false when m = 2. In this case, there exist two linearly independent Killing spinors on $L(p; q_1, q_2)$ iff $q_1 = q_2 = 1$ for the spin structure \tilde{B}^+ and $q_1 = 1, q_2 = p - 1$ for the spin structure \tilde{B}^- , without conditions about p.

CONCLUDING REMARKS

We have seen that the spin bundle on $\mathbb{P}^{4k-1}(\mathbb{R})(k > 1)$ is trivial. The spheres S^3 and S^7 are the only spheres which admit a trivial principal orthonormal frame bundle ([5] th 13.10 p. 225 and th. 8.2. p. 156). One can show that the spin bundle over any 3-dimensional lens space $L(p; q_1, q_2)$ is trivial. This is not

the case for the 7-dimensional lens spaces as was pointed out to us by P. Gilkey [10]. On the other hand, there exist 3-dimensional lens spaces which don't admit Killing spinors. Hence the Killing spinor argument to prove triviality of the spin bundle has limited validity. We need another method to determine whether 3-dimensional lens spaces are the only trivial examples outside projective spaces.

ACKNOWLEDGMENTS

I thank M. Cahen, S. Gutt and L. Lemaire for valuable discussions.

I thank P.B. Gilkey for pointing out the fact that the 7-dimensional lens spaces do not admit a trivial spin bundle.

REFERENCES

- M. ATIYAH, R. BOTT, A. SHAPIRO: Clifford modules. Topology, Supp. 1 to vol. 3 (1964) 3 - 38.
- [2] M. CAHEN, S. GUTT, L. LEMAIRE, P. SPINDEL: Killing spinors, Bull. Soc. Math. de Belgique, t. 38A (1986) 75 - 102.
- [3] L. DABROWSKI, A. TRAUTMAN: Spinor structures on spheres and projective spaces, J.M.P. 27 (8) (1986) 2022 2028.
- [4] S. GUTT: Killing spinors on spheres and projective spaces, To appear in: Proceedings of the conference «Spinors in Physics and Geometry». World Sc. Publ. Co. Singapore.
- [5] D. HUSEMOLLER : Fibre bundles, Mc Graw Hill, New York (1966).
- [6] J. MILNOR: Spin structures on manifolds, Enseignement math. 9 (1963) p. 198.
- [7] E.H. SPANIER : Algebraic topology, Mc Graw Hill, New York (1966).
- [8] S. SULANKE: Der erste Eigenwert des Dirac-Operators auf S⁵/Γ. Math. Nachr. 99 (1980) 259 - 271.
- [9] J.A. WOLF: Spaces of constant curvature, Mc Graw Hill, New York (1967).
- [10] P.B. GILKEY: private communication.

Manuscript received: November 12, 1987.