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Spin structures
and Killing spinors
on lens spaces

A.FRANC*

¢/o Departement de Mathematiques
Campus Plaine c.p. 218
B - 1050 Bruxelles

Abstract. We determine the values of m and p for which a lens space ZP\S 2m—1
admits a spin structure.

We prove that the only lens spaces (with dimension > 3) admitting a maximal
number of linearly independent Killing spinors are the real projective spaces
P¥%—Y(R).

INTRODUCTION

A lens space is the quotient of the sphere § -1y > 2) by a particular action
of the group Z,,. It is known that there exists 2 unique spin structure on §2m-1
[5]. On the real projective space IP2™ ~I(IR), which is the lens space correspond-
ing to p = 2, there exist two inequivalent spin structures when m is even and no
spin structure when m is odd [5]. On the lens spaces associated to S°, there
exists one and only one spin structure if p is odd and none if p is even [8].

In this paper, we determine the values of m and p for which a lens space
admits a spin structure (Theorem 1).

It was observed in [2] that the spin bundles on S"(n > 2) are trivial by
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constructing 2"/2! linearly independent non-zero sections which are Killing
spinors. The same argument was used in [4] to prove triviality of the spin bundle
on P¥*—XIR)(k = 1). We prove that a lens space of dimension 2m — 1 (m > 2)
admits 2”1 linearly independent Killing spinors if and only if m = 2k and the
lens space is the projective space P**~1(IR). (Theorem 2).
The paper is organized as follows:

In § 1, we recall the basic notions ot spin structure, spinors and Killing spinors.
§ 2is devoted to the study of existence and to the construction of spin structures
on lens spaces. In § 3, we compute the conditions for a Killing spinor on the
sphere to give rise to a Killing spinor on a lens space.

1. DEFINITIONS AND NOTATIONS (for details, see [1] and [2])

Let C,, be the Clifford algebra of the real euclidean space of dimensionn : C, =
=9 (R”)/I where J (IR?) is the tensor algebra of IR" and / is the ideal generated
byxey+yex+ 2(x, yrld.((x, y)is the usual scalar product on IR”).

C,T (resp. C;) is the image in Cn of the tensors of even (resp. odd) degree.

If n is even, n = 2, the complexification Cgm of C,,, is isomorphic to the
algebra of all linear endomorphisms of the exterior algebra AW of an isotropic
subspace W of €™ . This isomorphism can be constructed as follows:
Let{e,,a=1,...,2m}be an orthonormal basis of R27,

Let W be the space generated by {f, = € gy T ey, | <k <m}
Define

2m

5 :Cm(c €L ) End(AW) by

z

P (ezk__l)' 0(=);€ no— l(f]?‘)a

2m

P (ey) - a=—V—1(f na+i(f#)) o€ AW

where i(fF)is the inner product by f}*.
This linear map extends to an isomorphism of C%m onto End(AW).
We shall choose as basis of AW :

m
LIy =F noonfy ( r<[7} 1<i < <12r<nz)
m—1 . '
fJ:f}] A"'Af}2’+l< r< 3 ]<]1<"'<]2)’+1<'n)
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2m 2m
The v matrices are the matrices of v, = E(ek) in this basis. One has the

relations:
2m 2m 2m 2m
Ye M1+ YW =728, 1d
The space S,, = AW is called the space of spinors and has complex dimension
2™. It decomposes as S, = S2+m ® 55, where S; (resp. S7,,) is the space of
even (resp. odd) forms on W. This decomposition is preserved by C*, i
Ct§* C§* ().
If nis odd, n = 2m — 1, C,, _, is isomorphic to C2+m and the isomorphism
is constructed as follows:
Let o : R C,, ) = CS,, :e; = efe,, where {e;, i < 2m — 1} (tesp.
{e]'-,]' < 2m}) is an orthonormal basis of R?” ~1(resp. R?™). This extends to an
isomorphism of C,,, _; onto C5_
Using this isomorphism and (%) one sees that

cS,_, ~End(s;,) @ End(S3,,)
= End(S,,,_) e End(S2m_1).

The space S;m =S,,,_, is called the space of spinors.
The representation of the Clifford algebra C,, | onS,, _,, defined on the
generators ¢, (a < 2m — 1) by

2m—1 2m 2m
P ()= Dlale)s,  =Plgep),
2m-—1 2”}:1 m 2m
is irreducible. The vy matricesread v, = 0 (¢ ) =7, 'Yzm[ SHn
The Spin group, Spin(n), is the set of elements x in C;l+ such that xyx~! €
€ R™C C,) for all y € R" and x"x = 1 where 7 is the unique antiautomorphism
of C, extending Id (m,,. The fundamental representation of Spin(n) on §,,

n
o [Spm(n), is called the spin representation.

If n = 3, the Spin group Spin(n) is the universal covering of SO(n). The cover-
ing homomorphism is 8 : Spin(n)— SO(n):

x - [y > xyx~1].

Its differential is an isomorphism of Lie algebras 0, :spin(n) - so(n).

If E, denotes the n x n matrix with 1 at the intersection of the a™ row and
™" column and O elsewhere, an element A of so(n) reads A = Ea’bA”bEab with
A% = — A% and 0, "UASE,,) = —+ A%e e, .

Let (M, g) be an oriented Rlemanman manifold of dimension » and let B Em
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be the bundle of oriented orthonormal frames on M, a principal bundle over M
with structure group SO(n). One says that (M, g) admits a spin structure (or is a

spin manifold) if one can find a principal bundie BL M over M with structure
group Spin{n) and a homomorphism ¢ : B = B such that
(i) the following diagram commutes:

B 8 B
5\ /p

M

(ii) p(kg) = @(£)0(g) for all £ € B, g € Spin(n), where 0 : Spin(n) - SO() is
the covering homomorphism.

PROPOSITION 1. ([6]): (M, g) admits a spin structure iff the second Stiefel-Whitney
class of the tangent bundle of M vanishes. In this case, the number of inequivalent
spin structures on M is equal to # H'M, Z,,). n

If M is a spin manifold, the associated vector bundle & = B x ’LSn is called

P
the spin bundle and its sections are the spinor fields.

To each spinor field ¢, one can associate a function J S S, such that

V) =pEHi)  VgeSpin(k), E€B.

Let w be the pull-back connection on B of the Levi Civita connection w on
B:&= Gﬂ—l(w*w).

The covariant derivative Y of a spinor field ¥ is defined in the following way:
1f X 1s a vector field on M, V Y is the spinor field whose assomated function on
B is V ¥ = th/ where X is the horizontal lift of X on B with respect to &.

n n
Let=T'MoF e S* =Bx(R'* S, eS5") where p = (o epop
n
(here ’;) is the usual representation of SO(n) on R” and p* is the contragredient

n
representation of p).

The element v is the section of & whose associated function is the constant

~a -~ A~ n
Y:BoR*"©S e85 5= X ek gy, where {¢X} is the dual basis of the
k=1

n
basis {ek} of IR", ')rrlk = B(ek) and SM ® S;‘ is identified with End(S, ).
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A Killing spinor on (M, g) is a spinor field ¢ such that Vi = Ay where Nisa
constant. Equivalently, it is a function Jf ‘B~ S, having the following properties:

) V() =5 N®  VEEB g€ Spintn)
) XPE) = A 2 XK By 00 VX vector field on M where X* (§)

(k < n) are the oomponents of X in the orthonormal frame (§).
A spin manifold admitting a non zero Killing spinor is an Einstein manifold.
The constant A is related to its scalar curvature R by the formula: [2]

R =4n(n— 1)

2. EXISTENCE OF SPIN STRUCTURES ON LENS SPACES
Consider $2™ ~1(m > 2) as the unit sphere of €™ : §2m~1= {(z1 s Zyy) EC™
E, 2z, = 1}, and let Zp be realized as the subgroup of U(m) (also contained

in SOm)):

2mig k
)
p
1 0<k<gp—-1 >
2miq, k
exp(
p

where q].(l <j<m)is an integer, 0 < q;<p and q; is prime to p.
The lens space L(p, 4y> - 4, ) of dimension 2m — 1 with parameters p, q,,
.+ @,, is the quotient space ZP\SZ”"1 .

Remark. One can take without loss of generality one of the q]fs equal to 1. In
what follows, we shall suppose q, = 1.

Example. The real odd dimensional projective spaces IP?” ~}(IR) are lens spaces
with parameters (2;1,...,1).

The unique spin structure on S2™~! can be viewed as the principal bundle
Spin(2m) on S2™-1! with the homomorphism 8 : Spin(2m) - SO(2m) [4]. In
fact, SO(2m) is naturally identified with the principal bundle of orthonormal
oriented frames on $?”~1:if ¢ (a < 2m) is orthonormal basis of R?" and if 4
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is the matrix of an element of SO(2m) in this basis, this element is identified
with the orthonormal frame {Ae;, i <2m}at the point Ae,,, .

PROPOSITION 2. Let (M, g) be a spin manifold of dimension n, and let (]l7], § p)
be a Riemannian covering of (M, g). Then @, 2) is a spin manifold. Moreover, if
the _covering is a Galois covering with automorphzsm group_ G and th £ B (resp.

% B) is the spin structure on (M, g)(resp. (M, ), then B (resp. B) is a Galois
covering of B (resp. BJ with automorphism group G.

Proof. The manifold (1171, é) is naturally oriented.

There exists an open cover U (« € A) of M which trivializes B, B and M.
The cocycles 8,, and §M of B and B are such that 6(§;M(x)) = g, (x) for all
X in U Nnu,.

Let p~Y(U,) = U U,

g
eed

The cocycles of Band B are given by
o, V) = 8o (P(¥))

?Bbaa(y)=§ﬁa(p(y)) vyeU,,NnU,,,

a and b being such that the intersection is not empty.
We still have B@baa(y))zgﬁb%(y) vyeU,,nU,,
and thus we have a spin structure on M.
For the second part of the proposition, the hypothesis implies that M is a
principal bundle over M with G as structure group.
som=|] v, xc/~
a€EA

where [x,,al ~xg, 0] iff x, =x andb=a-cy (x,)

with Cq X ) E G.
From the preceeding construction of B, one then has:

B= U U, xG xSOn)/~

=y
where Ix, a A~ [xﬁ, b, B] iff x, =x, b=a-c,(x,)

and B = gaa(x )A

So G acts on B by left multiplication on the ond factor, and this action com-
mutes with the action of SO(n).

A similar argument applied to B concludes the proof of the proposition.
Q.E.D. n
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The Riemannian covering $2”~1 —» L(p: 4y, > 4y ) is @ Galois covering with
automorphism group Zp‘ Hence Proposition 2 implies that any spin structure
on L(p; G154 )is the quotient of Spin (2m) by an action of Zp. Furthermore,
this action is compatible with the homomorphism @ : Spin(2m) -~ SO(2m) and
hence projects onto the action on SO(2m) of the subgroup ZP:

0 -q,
q, ©

2wk q 0
Z =| A% =exp — 2 LO0<k<gp—-1

0 -q,,
4y 0
By the lifting map theorem ([9] th. 1.8.12 p. 36), the action of Zp on Spin(2m)
is induced by the left action of a subgroup of Spin(2m) isomorphic to Zp. A
generator of this subgroup is one of the 2 elements in 6~ 1(4). Hence to detect

the existence of a spin structure on L(p, g, ...q,, ), it is sufficient to determine if
#~1(4) contains an element of order p.

THEOREM 1. If pis odd, L(p; dqs - m )admits one and only one spin structure.
If p is even, L(p, qys s G ) doesn’t admit a spin structure when m is odd, and
admits two inequivalent spin structures when mis even.

Proof. By the definition of 0:1 , we have
0 —q
q, 0

27
0~(4) = texp — 67}
D

0 —q,,
9m 0

T
= texp ; (qreje, +qrese, + o+ g6, 16,)
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Let 87 4A4)* and 6~ YA4)™ be these two elements.

2m
In the spin representation p | Spin(2m)® the element €)i-1€; is written in the
basis {1(= foh Iy f/\ /\fl, 1<r<[ 1,1 1 < <g, < m}ofS asa
diagonal matrix with entries:
21 Im 2m
P ey r82)un = Oy Maylsg duny = — i€
where e]’ +lifjer={i,. . .i,)
—1if j&I={iy, ... 0y}

The matrix of 6 1(4)* in this basis is thus also diagonal with entres:
O~ A4)*) ;) = exp "l’;,’l (elq, + elg, + .. + € q,).

It is of order p iff ()P (— 1)1+ 4 dm = 1,

If p is even, the condition is that g, + ... + g,, must be even.

But all the q].’s are prime to p, so they are all odd and the condition is satisfied
iff 1 is even.

Note that in this case, the two matrices 6~ 1(4)* and 0~ 1(A4) are of order p.

If p is odd, 671(4)* is of order p iff q, + ... + g,, is even, and 67 (4)™ is of
order piff q, + ... + gq,, is odd.

In this case, one and only one of the 2 matrices is of order p, and thus there is
one and only one spin structure.

When p and m are even, the two spin structures given by 6~ 44)* and 6~ 14 )
are inequivalent. In fact, the universal coefficients theorem ([7]) implies that
#HYL(p; q,, . . ., 4, ), Z,)= 2 when p is even.

So, applying proposition 1, if there exist spin structures, there are exactly 2
inequivalent ones. The result follows from the fact that all the spin structures on
L(p; q,, .., q,,) are provided by the quotient of Spin(2m) by Zp where the
generator of Zp acts by left multiplication by one of the two matrices 8- *(4)*
and -4y . QE.D. n

Applying this result with p = 2:
COROLLARY. For all k integer > 1, P4 %+ Y(IR) does not admit a spin structure

and PP**~Y(R) admits two inequivalent spin structures. n

3. KILLING SPINORS ON LENS SPACES

PR OPOSITION 3. ([2] - {4]). On the sphere S¥ Y = 2), a Killing spinor is
defined by a function
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Ue(e =+ 1) : Spin@m) =S, =S},
given by y¢(g) = 1¢ @ DS, where Y¢ is any element of S,,, | and 1¢ is the
representation of Spin(2m)on Szm—1 whose differential is given by

AL, M)l A

a,b<2m ij<2m-—1

+ 2¢ Z Ailm,yl_Zm—l‘

i<2m-1

It satisfies: V¢ =—;—71})e. .

Proposition 2 implies that a Killing spinor on a lens space L(p; qys - a,,)
(which is a spin manifold) admits a lift to S2”~! whichis a Killing spinor stable
by the action of Zp.

The Killing spinor ¢ defined by y¢(g) = 7* @ Hyg on S ~1 gives rise to a
Killing spinor on L(p;q,; ..., q,, ) iff

TEOTHAYIYE = YL,
where

m
TOHA) ) =T\ 2exp — (g e.e, + .+ q e, 1€,)
p

w
= rexp — @ o G YT TRTS  n YinT),

In the basis {1, f;}of S
entries:;

:S+

2m?

a1 the matrix of 7(6~1A4)) is diagonal with

—in
(76(9_1(A)1))(“) = texp —;— (elg,+ ..+ 67171-1‘1m—1 +e-elq,)

So the equations read:

—im
+ exp " (elq,+ .+ el a, )W = (&)

where (d/f,)’ are the components of ¢ in this basis.

There exists a maximal number (= 27 ~1) of linearly independent Killing
spinors iff these equations are simultaneously satisfied for all sets 7 of an even
number of indices.
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This is equivalent to

a) elq, + .. + €€l q, = 2k;p VI(k; € Z) if the spin structure is given by
0 I(A)+

b) e’lq1 + ..+ € efn q,, = Rk, + Dp VI(k;, € Z) if the spin structures is
given by 8~ 14",

The cases a) and b) can be treated in the same way:

Suppose m > 2.

By taking / = {1, m} and I = {2, m} and substracting the 2 equations, we get
that g, — ¢, is a multiple of p. But ¢, and g, are positive integers < p and prime
top;soq,—q, =0andg, =g, =1 because we may suppose q, = 1.

(A similar argument proves that Vi, j<m : q; = q; = 1).

By taking/ = ¢ and / = {1, 2}and substracting the 2 equations, we obtain that
2 is a multiple of p, so p = 2 and all the q].’s (including ¢,, ) are equals to I.

Note that in this case m is even: m = 2k.

So this leads necessarily to the case of the real projective space IP**—1(RR).
Moreover, the value of € is determined by the spin structure and the parity of
k :in the case a) : € = (— 1)*, and in the case b):e = (— 1)k+1,

So we have proved:

THEOREM 2. The only lens spaces L(p; Gps s qm) with m > 2 admitting 2m—1
linearly independent Killing spinors are such that m = 2k and are the real projecti-
ve spacesIP* ~ Y R) (k > 1).

Let B denote the two spin structures onIP#¢~1(R).

A Killing spinor on P**-1(R) with spin structure B®*) is determined by a
Killing spinor W€ on the sphere S**~1 which satisfies y¢(g) = ¥<(6~1A)*)g)
Vg € Spin(4k) and for which the value of € is determined by the condition
€= () (— DF. n

Remarks. 1. The second part of the theorem was already provedin {4].

2. The first part of the theorem is false when m = 2. In this case, there exist two
linearly ingependent Killing spinors on L(p, q,, q,) iff g, =q, = 1 for the spin
structure B* and q, = l,q2 = p — 1 for the spin structure 17’, without conditions
about p.

CONCLUDING REMARKS

We have seen that the spin bundle on IP*¥~L(IR)(k > 1) is trivial. The spheres
S3 and S7 are the only spheres which admit a trivial principal orthonormal
frame bundle ([5] th 13.10 p. 225 and th. 8.2. p. 156). One can show that the
spin bundle over any 3-dimensional lens space L(p; q1: q,) 18 trivial. This is not
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the case for the 7-dimensional lens spaces as was pointed out to us by P. Gilkey
[10]. On the other hand, there exist 3-dimensional lens spaces which don’t admit
Killing spinors. Hence the Killing spinor argument to prove triviality of the spin
bundle has limited validity. We need another method to determine whether 3-
"dimensional lens spaces are the only trivial examples outside projective spaces.

ACKNOWLEDGMENTS

I thank M. Cahen, S. Gutt and L. Lemaire for valuable discussions.
I thank P.B. Gilkey for pointing out the fact that the 7-dimensional lens
spaces do not admit a trivial spin bundle.

REFERENCES

[1] M. ATiYAH, R. BOTT, A. SHAPIRO: Clifford modules. Topology, Supp. 1 to vol. 3 (1964)
3.138.

[2] M. CaHEN, S. GUTT, L. LEMAIRE, P. SPINDEL: Killing spinors, Bull. Soc. Math. de
Belgique, t. 38A (1986) 75 - 102.

[3] L. DABROWSKI, A. TRAUTMAN: Spinor structures on spheres and projective spaces,
JMP. 27 (8) (1986) 2022 - 2028.

[4) S. GUTT: Killing spinors on spheres and projective spaces, To appear in: Proceedings of
the conference «Spinors in Physics and Geometry». World Sc. Publ. Co. Singapore.

[5] D.HUSEMOLLER : Fibre bundles, Mc Graw Hill, New York (1966).

[6] J. MILNOR : Spin structures on manifolds, Enseignement math. 9 (1963) p. 198.

[71 EH. SPANIER : Algebruic topology, Mc Graw Hill, New York (1966).

[8] S. SULANKE: Der erste Eigenwert des Dirac-Operators auf S5/T. Math. Nachr. 99 (1980)
259 -271.

[9] J.A. WOLF: Spaces of constant curvature, Mc Graw Hill, New York (1967).

[10] P.B. GILKEY: private communication.

Manuscript received: November 12, 1987.



